Social-Media Monitoring for Cold-Start Recommendations
نویسندگان
چکیده
Generating personalized movie recommendations to users is a problem that most commonly relies on user-movie ratings. These ratings are generally used either to understand the user preferences or to recommend movies that users with similar rating patterns have rated highly. However, movie recommenders are often subject to the ColdStart problem: new movies have not been rated by anyone, so, they will not be recommended to anyone; likewise, the preferences of new users who have not rated any movie cannot be learned. In parallel, Social-Media platforms, such as Twitter, collect great amounts of user feedback on movies, as these are very popular nowadays. This thesis proposes to explore feedback shared on Twitter to predict the popularity of new movies and show how it can be used to tackle the Cold-Start problem. It also proposes, at a finer grain, to explore the reputation of directors and actors on IMDb to tackle the Cold-Start problem. To assess these aspects, a Reputation-enhanced Recommendation Algorithm is implemented and evaluated on a crawled IMDb dataset with previous user ratings of old movies, together with Twitter data crawled from January 2014 to March 2014, to recommend 60 movies affected by the Cold-Start problem. Twitter revealed to be a strong reputation predictor, and the Reputation-enhanced Recommendation Algorithm improved over several baseline methods. Additionally, the algorithm also proved to be useful when recommending movies in an extreme Cold-Start scenario, where both new movies and users are affected by the Cold-Start problem.
منابع مشابه
A Survey of Content Aware Video based Social Recommendation System
Collaborative Filtering (CF) has achieved widespread success in recommender systems, which automatically aggregate and predict preferred products of a user using known preferences of other users from large scale SRSs. But on the other hand, a large portion of them cannot manage the cold-start issue that indicates a circumstance that social media sites neglect to draw suggestion for new things, ...
متن کاملOn Recommendations in Heterogeneous Social
In this dissertation, we study the problem of social media recommendations with a heavy emphasis on exploiting social, content and contextual information. The problem of recommendation analysis and collaborative filtering has been widely studied in the literature because of its numerous applications to a wide variety of scenarios. Many social media sites such as Flickr or YouTube contain multim...
متن کاملMerging Similarity and Trust Based Social Networks to Enhance the Accuracy of Trust-Aware Recommender Systems
In recent years, collaborative filtering (CF) methods are important and widely accepted techniques are available for recommender systems. One of these techniques is user based that produces useful recommendations based on the similarity by the ratings of likeminded users. However, these systems suffer from several inherent shortcomings such as data sparsity and cold start problems. With the dev...
متن کاملA Domain Ontology in Social Networks for Identifying User Interest for Personalized Recommendations
Social media and the development of web 2.0 encourage the user to participate more interactively in social networks. In social network relationships may be identified by the user posts and interactions. Using this data, the system can make recommendations tailored to specific users. However, when the user is on social network for the first time, the recommendation system cannot make recommendat...
متن کاملAnalyzing User Preference for Social Image Recommendation
With the incredibly growing amount of multimedia data shared on the social media platforms, recommender systems have become an important necessity to ease users’ burden on the information overload. In such a scenario, extensive amount of heterogeneous information such as tags, image content, in addition to the user-to-item preferences, is extremely valuable for making effective recommendations....
متن کامل